

Developments in Ultra Lighweight Membrane Optical Elements

Presented by Brian Patrick Technology Days MSFC May 23, 2002

Membrane Material for Optical Applications

CP1™ (Clear Polyimide)

- Developed by NASA Langley specifically for Space Applications
- Material Synthesized by SRS Under Exclusive License from NASA. (End to End Quality Control)
- Film Manufacturing Process Results in Very Homogenous Film Properties
- Wide Range of Operating Temperatures (Cryogenic - 250C)
- Resistant to UV Radiation
- Film Solubility Enables Advanced Casting and Surface Replication Manufacturing Techniques

Polymer Manufacturing Facilities

Primary Requirements for Precision Membrane Optics

Surface Finish

 A Highly Polished Specular Surface is Required to Transmit or Reflect Incident Light With Minimal Wave Front Distortion

Uniform Thickness

- Thickness Variations will Contribute to Figure Errors
- Stressed Membranes
 Assume the Figure of the Mid Plane

Figure Control

- Boundary Control
 - Rigid Ring
 - Compliant Ring
 - Active Tuning
- Distributed Loading
 - Electrostatic
 - Piezoelectric
 - Magnetic
 - Stress Coating

Membrane Thickness Variation Process Refinement

- Modifications to casting process has resulted in drastic improvement in thickness variation present on both flat and curved substrates.
- Sub-Wavelength Thickness Variation Demonstrated on Apertures Up To 0.5-meters.

Typical Membrane Material

Uniform Thickness Variation

Minimized Thickness Variation

Membrane Thickness Variation Process Refinement

Double-pass Interferogram of a 10cm Sample of CP-1

Thickness Uniformity ~1/20 wave rms.

SRS Large-Scale Casting System

- New large-scale membrane facility has been installed at SRS and initial castings have shown similar success in thickness variation. Expandable up to 3-meter diameter castings.
- Currently Thickness Variation has been minimized to ~2 waves of error over 1.5meters.

Center Strip of 1.5-meter Membrane Casting Prior to Facility Upgrade

Thickness Variation Composite of 1.5meter diameter CP-1 Membrane revealing only ~2 waves of error.

Surface Roughness for SRS CP1™ Cast Membrane Films

Surface Topography for SRS CP1™ Sample Cast from a Non-Precision Float Glass Substrate

Membrane Shape Management - Flats

Precision Thin Film Pellicles for Optical Bench Applications

Twyman-Green Interferometer consisting of CP1 beam splitter and mirrors

Membrane Shape Management – Curved, Stress Coated Membranes

Interferogram of 1.5-inch diameter central region of uncoated membrane

Interferogram of 4-inch diameter central region of uncoated membrane

Membrane Shape Management – Curved, Stress Coated Membranes

Interferogram of 1.5-inch diameter central region of coated membrane

Interferogram of 4-inch diameter central region of coated membrane

Membrane Shape Management – Curved, Stress Coated Membranes

All Data in Waves @ 633nm

Analysis of 1.5-inch diameter central region of coated membrane **Focus Term**

olyno	mial List							
Z0:	0.763890	Z10:	-0.15240	Z20:	0.397790	Z30:	-0.04050	Z40: 0.000000
Z1:	0.066319	Z11:	0.519079	Z21:	-0.03450	Z31:	0.185340	Z41: 0.000000
Z2:	0.115139	Z12:	0.007569	Z22:	-0.02439	Z32:	-0.05059	Z42: 0.000000
Z3:	0.706139	Z13:	-0.01389	Z23:	0.194029	Z33:	0.045030	Z43: 0.000000
Z4:	0.127880	Z14:	0.307389	Z24:	-0.27649	Z34:	0.083629	Z44: 0.000000
Z5:	-0.02439	Z15:	-0.35420	Z25:	-0.01690	Z35:	-0.04679	Z45: 0.000000
Z6:	-0.08930	Z16:	-0.10450	Z26:	-0.00120	Z36:	-0.00619	Z46: 0.000000
Z 7:	0.345609	Z17:	0.017550	Z27:	-0.07960	Z37:	0.000000	Z47: 0.000000
Z8:	-0.40770	Z18:	0.024539	Z28:	0.011409	Z38:	0.000000	Z48: 0.000000
Z9:	0.028049	Z19:	-0.04139	Z29:	-0.00419	Z39:	0.000000	•

Membrane Shape Management – Curved, Stress Coated Membranes

Focus Term Removed

Membrane Shape Management – Curved, Net Shape

- Replicated Spherical Optics Test
- 0.5-meter f/1.87 membrane
- Slight Vacuum used to seat film onto mount
- Ronchi Grating used to test membrane

16-Inch Spherical Test Article

Membrane Shape Management - Curved, Net Shape

- 0.5 lp/mm grating used at orthogonal positions
- Edge Loads and Out of Plane Loads **Change Figure**
- Analysis Shows Figure Error.
 - 39 micron RMS figure error for full aperture.
 - 7 micron RMS figure error for 20-cm aperture
 - Majority of figure error is membrane mounting non-uniformities and slight surface roughness on diamond turned seating ring on mount.
 - This figure error begins to approach the available correction range of adaptive optic systems currently in use such as the Real-Time Holography developed by the AFRL.

Membrane Shape Management – Curved, Magnetic

- SRS membrane has central area coated with magnetic material.
- The membrane is flat and of optical quality demonstrating ~1/4wave flatness in central area.
- A magnetic actuator is placed behind the membrane.
- System is placed in ZYGO interferometer setup for surface figure measurement.

Membrane Shape Management – Curved, Magnetic

As actuator moves closer curvature is produced in the membrane, primary error compared to flat is mainly Focus, some spherical..

Conclusions

- Membrane Optical Elements, With Areal Density of 0.05 Kg/m² (Unsupported), Have Been Manufactured With Surface Finish and Thickness Tolerance Sufficient for Precision Optical Applications
- Practical Flat Membrane Elements Are Available Now. Additional Research Is Under way to Further Address Lightweight Support and Figure Control for Curved Optical Elements.
- Scaling Technology Exists to Create Very Large Aperture Membrane Elements of Optical Quality.
- Funding Sources AFRL & NASA/MSFC